https://github.com/gaowanlu/machineLearning-deepLearning
推荐书籍
PS C:\Users\dmlt> nvcc --version
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2025 NVIDIA Corporation
Built on Wed_Apr__9_19:29:17_Pacific_Daylight_Time_2025
Cuda compilation tools, release 12.9, V12.9.41
Build cuda_12.9.r12.9/compiler.35813241_0
PS C:\Users\dmlt> nvidia-smi
Thu May 8 14:16:12 2025
+-----------------------------------------------------------------------------------------+
| NVIDIA-SMI 576.02 Driver Version: 576.02 CUDA Version: 12.9 |
|-----------------------------------------+------------------------+----------------------+
| GPU Name Driver-Model | Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|=========================================+========================+======================|
| 0 NVIDIA GeForce GTX 1050 Ti WDDM | 00000000:01:00.0 On | N/A |
| 50% 35C P8 N/A / 75W | 865MiB / 4096MiB | 10% Default |
| | | N/A |
+-----------------------------------------+------------------------+----------------------+
+-----------------------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=========================================================================================|
| 0 N/A N/A 4752 C+G ...8bbwe\PhoneExperienceHost.exe N/A |
| 0 N/A N/A 4788 C+G D:\vscode-portable\app\Code.exe N/A |
| 0 N/A N/A 5456 C+G ...App_cw5n1h2txyewy\LockApp.exe N/A |
| 0 N/A N/A 5612 C+G ...5n1h2txyewy\TextInputHost.exe N/A |
| 0 N/A N/A 6716 C+G D:\Feishu\app\Feishu.exe N/A |
| 0 N/A N/A 8744 C+G ...yb3d8bbwe\WindowsTerminal.exe N/A |
| 0 N/A N/A 10300 C+G C:\Windows\explorer.exe N/A |
| 0 N/A N/A 11624 C+G ...h_cw5n1h2txyewy\SearchApp.exe N/A |
| 0 N/A N/A 12472 C+G ...xyewy\ShellExperienceHost.exe N/A |
| 0 N/A N/A 13432 C+G ...t\Edge\Application\msedge.exe N/A |
| 0 N/A N/A 13780 C+G D:\Microsoft VS Code\Code.exe N/A |
| 0 N/A N/A 14804 C+G ...ram Files\Listary\Listary.exe N/A |
| 0 N/A N/A 15188 C+G D:\CloudMusic\cloudmusic.exe N/A |
| 0 N/A N/A 15404 C+G ...k\current\Client\CorpLink.exe N/A |
| 0 N/A N/A 20272 C+G ...4__8wekyb3d8bbwe\Video.UI.exe N/A |
| 0 N/A N/A 22848 C+G ...Browser\Application\brave.exe N/A |
| 0 N/A N/A 24104 C+G ...ntrolPanel\SystemSettings.exe N/A |
+-----------------------------------------------------------------------------------------+
PS C:\Users\dmlt>
pip install scikit-learn -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install pandas -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install matplotlib -i https://pypi.tuna.tsinghua.edu.cn/simple
# GPU支持的pytorch
pip install torch torchvision torchaudio -i https://pypi.tuna.tsinghua.edu.cn/simple --index-url https://download.pytorch.org/whl/cu118
import torch
import sys
import torch.version
import torch.cuda
print(torch.version.cuda)
if torch.version.cuda == None:
print("请卸载torch重新安装GPU版本")
def test_pytorch_gpu():
# 打印PyTorch版本信息
print(f"PyTorch版本: {torch.__version__}")
# 检查CUDA是否可用
= torch.cuda.is_available()
cuda_available print(f"CUDA是否可用: {cuda_available}")
if cuda_available:
# 打印可用的GPU数量
= torch.cuda.device_count()
gpu_count print(f"可用GPU数量: {gpu_count}")
# 打印当前GPU设备名称
= torch.cuda.current_device()
current_device print(f"当前GPU设备ID: {current_device}")
print(f"当前GPU设备名称: {torch.cuda.get_device_name(current_device)}")
# 测试简单的CUDA操作
print("\n测试CUDA张量操作...")
= torch.rand(5, 3).cuda()
x = torch.rand(5, 3).cuda()
y = x + y
z print(f"CUDA张量操作成功,结果形状: {z.shape}")
# 测试更复杂的操作(矩阵乘法)
= torch.rand(1000, 1000).cuda()
a = torch.rand(1000, 1000).cuda()
b print("执行GPU上的大矩阵乘法...")
= torch.matmul(a, b)
c print(f"矩阵乘法完成,结果形状: {c.shape}")
print("\nGPU测试成功!✅")
else:
print("\n⚠️ 无法检测到GPU或CUDA不可用")
print("请检查:")
print("1. 您的计算机是否配备了NVIDIA GPU")
print("2. NVIDIA驱动程序是否正确安装")
print("3. CUDA工具包是否正确安装")
print("4. PyTorch是否安装了支持CUDA的版本")
if __name__ == "__main__":
print("==== PyTorch GPU 测试 ====")
test_pytorch_gpu()print("==== 测试完成 ====")